COMPTEL Constraints on ⁶⁰Fe Emission from ²⁶Al Sources R. Diehl, U. Wessolowski, S. Plüschke, A. Iyudin, V. Schönfelder, A.W. Strong (MPE Garching), H. Bloemen, W. Hermsen (SRON Utrecht), D. Morris, J. Ryan (UNH Durham), K. Bennett, C. Winkler (ESTEC Noordwijk), J. Knödlseder (CESR/UPS Toulouse), U. Oberlack (Columbia University New York) 60 Fe production from core-collapse supernovae is predicted to follow the spatial distribution of 26 Al sources, if supernovae produce essentially all of 26 Al in the galaxy. We use the map of 26 Al sources derived from COMPTEL measurements to constrain such correlated 60 Fe emission. With more observations and improved background-handling methods we are able to show that the theoretical prediction under above assumption of a flux ratio in the radioactivity lines from 60 Fe and 26 Al of $\sim 16\%$ appears too high. The implications of this finding with respect to 26 Al and 60 Fe production sources will be discussed.