Capability of the ASTRO-E Hard X-ray Detector for High-Energy Transients and γ-Ray Bursts

Y. Terada, K. Yamaoka, M. Kokubun, J. Kotoku, T. Mizuno, J. Kataoka, T. Takahasi, T. Murakami, K. Makishima, T. Kamae and the HXD team (Department of Physics, University of Tokyo)

The Hard X-Ray Detector (HXD) is one of the instruments onboard the Japanese cosmic X-ray/γ-ray satellite ASTRO-E, scheduled for launch in January 2000. The HXD covers the energy range from 10 keV to 700 keV with a very low background, typically 1×10^{-5} c s$^{-1}$ cm$^{-2}$ keV$^{-1}$ at 200 keV on ground, with a typical effective area of 330 cm2 at 50 keV. The X-ray detection part consists of 4×4 GSO/BGO well-type phoswich scintillators and 64 2mm silicon PIN diodes, surrounded by 20 Anti-counters working as active shields on 4 sides. The Anti-counters are made of 4 cm thick BGO crystals, with a very large geometrical area 1200 cm2 per one side, remaining the effective area 600 cm2 per one side at 1 MeV. The Anti-counters are additionally used for monitoring high-energy transient sources and γ-ray bursts in an energy range of 100 keV to 2 MeV.

The transient monitoring function is achieved by Earth Occulation method. For an accurate position determination of transient objects, X-ray spectra from the Anti-counters are read out every 1 sec (0.5 sec on condition) with an absolute timing accuracy of 30.5 μ sec. The onboard CPU compress these spectra data when the telemetry limitation is severe.

The γ-ray burst detection is achieved by monitoring the Anti-counter counting rates with a time resolution of 1/32 sec. The automated burst detection algorithm utilizes both hardware circuits and the onboard software. Once a γ-ray burst occurs, light curve data of Anti-counter before and after burst is telemetered. The overall angular responce of the Anti-counters has been measured in laboratory by irradiating them with isotopes from various directions in June 1999. Based on this calibration information, crude positions of the γ-ray bursts can be determined by comparing signal intensities detected on the four sides.